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1 Introduction 

This report describes work with the goal of enhancing capabilities in computer intrusion 
detection. The work builds upon a study of classification performance, that  compared various 
methods of classifying information derived from computer network packets into attack versus 
normal categories, based on a labeled training dataset[l]. This previous work validates 
our classification methods, and clears the ground for studying whether and how anomaly 
detection can be used to  enhance this performance, The DARPA project that  initiated 
the dataset used here concluded that anomaly detection should be examined to boost the 
performance of machine learning in the computer intrusion detection task[2]. This report 
investigates t,he data set €or a,spects that  will be valuable for anomaly detection application, 
and supports these results with models constructed from the data. 

In this report, the term anornaly detection means learning a model from unlabeled data, 
and using this to make some inference about future data. Our data is a feature vector derived 
from network packets: an “example” or “sample”. On the other hand, classification means 
building a model from labeled data, and using that model to classify unlabeled (future) 
examples. 

There is some precedent in the literature for combining these methods. One approach is 
to  stage the two techniques, using anomaly detection to segment data into two sets for classi- 
fication. An interpretation of this is a method to combat nonstationarity in the data. In our 
previous work, we demonstrated that the data has substantial temporal nonstationarity[l]. 
With classification methods that can be thought of as learning a decision surface between two 
statistical distributions, performance is expected to degrade significantly when classifying ex- 
amples that are from regions not well represented in the training set. Anomaly detection 
can be seen as a problem of learning the densi ty  (landscape) or the support  (boundary) of a 
statistical distribution so that, this characterization can be compared to  data points. Nonsta- 
tionarity can then be thought of as data that departs from the support of the distribution. 

Classification and anomaly detection are also referred to as supervised vs. unsupervised training respec- 
tively in the data mining and machine learning literature 
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Since we can judge that these  anomalous'' examples will be classified poorly, we can treat 
them difFereritly (or not at all). 

A second approach uses momaly detection with an assumption that any examples that 
are different are suspicious, which is an assumption that may or may not be true in an 
application. We will call this the Outlier Assumption. With this assumption there are 
simply the performance gains to  be had from combining models that  have uncorrelated 
errors into an ensemble with better performance than any of the individual models. This 
family of techniques has many names, including model averaging, multiple regression, and 
the very popular boosting approaches. In this approach the two methods are “peer” results, 
which are then combined to  generate a final result. 

Staged anomaly detection with the outlier assumption can also be used to  create data  
sub-categories into which the classification method is specifically tuned, or vice-versa. This 
is an avenue for further work in this application area, and will not be demonstrated in this 
study. 

As in our previous work, this report does not attempt to  address issues in dataset gener- 
ation or feature selection. The details of the network and data collection process as well as 
the way in which this “raw data” is transformed into well-defined feature vectors is a very 
important problem. However that exploration is beyond the scope of this effort. 

2 Dataset Description 

The data is described in mort! detail in [l]. Briefly, we are using data derived from a DARPA 
project which set up a real network and logged normal and attack network traffic. This 
experiment yielded a training set, and a test set. The test set was recorded after the training 
set, and is known to  reflect somewhat different activity. The data from this experiment were 
transforrned into a “clean” dataset for the 1999 KDD-Cup, a competition associated with 
the Knowledge Discovery and Datamining conference. This dataset has 41 features for every 
example, with a training and test set size of approximately 500,000 and 300,000 examples, 
respectively. The data are labeled as attack or normal, and furthermore are labeled with 
an attack type that, although too fine-grained to allow experimentation, can be grouped 
into four broad categories of attacks: dcnial of service (DoS), probe, user to root (u2r>, and 
remote to local (r2l). This is of particular interest since performance was shown previously to  
be very different for these categories, plausibly because they exhibit distinct nonstationarity. 

We have found it useful to further segment the dataset. The training set from KDD was 
broken into three parts to  investigate modeling on a stationary dataset: 10% was sampled for 
model training, 5% for model tuning (adjusting modeling parameters), and the remainder is 
used for validation (assessment of performance on the stationary data). The test set remains 
intact as a method of explorjng the impact of nonstationarity. Although this makes the model 
training set a small part of the avsilable data, our explorations indicate the performance is 
stable with this data size. It is also more convenient, for model training. 

These methods assume ordered numeric data. Therefore, a method of ANOVA trans- 
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Figure 1: Plots of the four attack types. In each plot Black points are the training set 
attacks, green points are the test set attacks, 
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formation is applied to  all variables, both categorical (by individual values) and real (by 
segmenting into intervals). Each discrete subset (value or interval) is modeled by the ob- 
served probability of attack in the training data, for each variable independently. This results 
in a transformed dataset of the same size but with a consistently scaled metric basis. This 
dataspace mapping will have a significant effect on the results of the automated learning. 

2.1 Dataset Nonstationarity 

Some data summaries will indicate the nonstationarity present. Figure 1's 3D plots show 
the distinction between the training set and the test set by attack type. These are plots of 
the first three principle components of the data examples. 

Another view of nonstationarity is presented in Table 1. We will use methods to  draw 
a boundary around a dataset, and then check whether new data falls within that bound- 
ary. From the presentation in Fig. 1 we expect there to be a distinct difference in the test 
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Table 1: Test data performance comparison of the SVM-RBF and Mahalanobis outlier de- 
tection methods. 

% inlier 
by both 

90.29 
98.77 
67.95 
57.30 
30.00 

Attack 
type 
Normal 
nos 
Probe 
W2L 
LJ2R 

-___ 

%outlier ’%outlier ’%outlier 
by SVM by Mahal by both 

3.78 3.00 2.93 
0.70 0.49 0.04 
0.25 30.34 1.46 
0.00 39.61 3.09 
0.00 48.00 22.00 

95.24 
98.17 
55.11 2.02 
9l.10 
40.35 0.44 

%outlier 
by Mahal 

1.99 
0.67 

32.12 
7.73 

37.28 

%outlier 
by both 

1.62 
0.71 

10.75 
1.04 

21.93 

Table 2: Validation data performance comparison of the SVM-RBF and Mahalanobis outlier 
detection methods. 

p G z -  
t ,Y Pe 
Normal 
n o s  
Probe 
H>2 L 
TJ2R 

-____ 

examples compared to the boundary generated on the training data. We used the training 
set, including both normals and attack examples, to derive such a boundary (within which 
lies 98% of the training set). Then, we examine the test set attack data,  as to  whether it 
lies within this boundary or not. We usc two methods, Mahalanobis distance (MHD) and 
a Support Vector Machine with radial basis kernel (RBF), to construct the boundary. Ta- 
ble 1 shows the percent of each attack type in the test set that were called inliers2 by both 
methods, that  were called outliers by only one method, or that  were called outliers by both 
methods. Table 2 is similar for the validation set. 

We can make two broad observations from this table. First, some attack types have 
apparently changed significantly in the test set. Second, the methods do not perform iden- 
tically, since in some cases there are significant portions of the attack that  were classified as 
outlier by one method, and inliers by the other. 

Table 3 shows that the proportion of normals is similar between the training and test 
sets, but the attacks are not. This is a constructed feature of the datasets, and they are not 
only nonstationary in frequency, but also in type. This is a representative performance of 
the method. 

-- 
2we have adopted the term “inliers” to  mean those points that are inside the boundary 
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Table 3: Distribution of categories in the train and test datasets. 

R2L 0.23 5.20 
U2R 0.07 

3 Description of Learning Methods 

3.1 Anomaly Detection Methods 

3.1.1 Mahalanobis Distance 

Let y be a p x 1 random vector in the Euclidean space E’. Assume that the mean vector of 
y is p and the covariance matrix is E. The (squared) Mahalanobis distance from y to p is 
defined to  be 

o2 = (y - p)’C-l(y - p). 

The Mahalanobis distance is often used to measure how far a random vector is from the center 
of its distribution, see 141 and [5]. Usually p and C are unknown and must be estimated 
from data with the sample mean, and the sample covariance matrix, 2, respectively. 

One way to  use t,he Mahalanobis distance for outlier detection is to  draw a random 
sample from the population of interest, and then compute the Mahalanobis distance of 
each observation to  the sample mean vector, $j. Next, determine the value of the largest 
Mahalanobis distance, say dN. For future observed data compute the Mahalanobis distance 
of each observation to ij and if any observation has a computed distance greater than dN 
label that  observation as an outlier. Any observation with a Mahalanobis distance less than 
dN is considered to bc “normal” or an inlier. 

An obvious modification to  the above procedure for identifying outliers is to  use a thresh- 
old other than the observed maximum Mahalanobis distance, d N .  For example, the 99th 
percentile of the observed distances could be used as the threshold, say d(99). If a future 
observation has a Mahalanobis distance greater than d(99) then this new observation is 
considered an outlier, otherwise it is considered an inlier. 

The equation 

defines an ellipsoid in RP. Geometrically, the above procedure for identifying outliers amounts 
to  calling any point outside this ellipsoid an outlier and any point inside the ellipsoid is an 
inlier. 
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Table 4: The rderence SVM radial basis function classifier performance. 

Test 

3.1.2 One-class Support Vector Machines 

Scholkopf et a1.[6] proposed using the support vector machine to  estimate the support of a 
distribution. Briefly, their idea is to specify a fraction, v, of the observed data to be outliers 
and then to find a %mall”, region, say S ,  in feature space that contains at least (1 - v)% of 
the observed data. Any point outside of S is considered an outlier. In general S need not 
be an ellipsoid. Schijlkopf et al. estimate a function f that is 1 on S and -1 otherwise. In 
this way a future Observation can be labeled as having come from S or not. 

Assuming that the training data is a random sample from an unknown distribution P ,  
Scholkopf et al. provide a bound on the probability that a new observation drawn from P will 
be outside of S;  the bound holds with a user specified confidence. The larger the confidence 
the user specifies, the larger the region S. Technical details that  we do not address can be 
found in [6]. 

Note, no claim is made that S is the “smallest” (by any metric) region that contains at 
least (1 - v)% of the data. 

A considerable amount of effort was spent exploring the relative performance of different 
SVM kernel and parameter settings. Our explorations led us t o  a choice of the RBF kernel, 
considering also linear and polynomial kernels of degrees up to  seven. 

3.2 Method of Categorization 

Since we previously explored alternative methods for classification, in this study we have 
chosen a single method in order to  limit the number of options. It is possible that other 
methods could result in better performance in this context, but since our strategy is explo- 
ration of different approaches through comparative performance, this aids in the clarity of 
the results. 

The method chosen is Support Vector Machines using the radial basis function kernel[3]. 
An examination of lhe performance of this classifier is shown in Table 4. Note that this 
one performance point does not represent the entire spectrum of performance of the method 
across different detection rates. This provides indicative Performance, and more detail is 
available in the report of our previous study[l]. 
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Table 5 :  Predicted outliers by known class for the validation and test sets. The %O column 
shows the percentage of outliers represented by each category. 

RBF 
validat ion test 

out %O in o u t  %O 
68.4 58916 1677 32.7 
30.4 227172 2681 52.3 
0.7 3634 532 10.4 
0.4 16000 189 3.7 
0.1 177 51 0.9 

305899 5130 

Norm 
DoS 
Probe 
R2L 
U2R 
Tot a1 

MHD 
validat ion test 
in out %O in out %O 

80257 5065 59.5 58408 2185 25.1 
341708 1837 21.6 226680 3173 36.5 

2475 1154 13.6 2380 1786 20.5 
557 415 4.9 14768 1421 16.3 

15 35 0.4 93 135 1.6 
425012 8506 302329 8700 

3.3 Anomaly Detection to Preprocess for Classification 

The approach examined here is to  combine the anomaly detection and classification in a 
serial fashion. As described above, anomaly detection will be used as a method to  assess 
whether the example is similar to those in the training set. If so, the classification method 
is applied. If not, then the system cannot treat that example reliably. 

Perforrnance in the stationary data subset is expected to be better than overall perfor- 
mance, and therefore also better than the examples classified as nonstationary. However, 
how to treat the performance of the anornalous examples is an open issue. Should they be 
considered as “normals”, lowering the detection rate, or as “attacks”, raising the false posi- 
tive rate, should they not be considered at all, or should they be classified using a different 
methodology or at least a different model? The performance results documented allow the 
impact of various system assumptions to be assessed. This will be taken up again below. 

4 Results 

In Table 5 we show the results from defining a region of feature space that contains 98% of 
the training data. Two methods were used to define a region: support vector machines with 
a radial basis kernel (SVM-RBF) and Mahalanobis distance (MHD). The MHD is a standard 
tool that will be used as a basis for evaluation of the SVM-RBF. From initial exploration 
the RBF kernel was found to  be the most appropriate for this data. For each type of attack 
we present the number of observations that are considered inliers and outliers. In addition 
we also show the distribution of attacks conditional on being an outlier; these are the entries 
in the column labeled %O. Tables 1 and 2 highlight the degree of (dis)agreement between 
the two methods. 

The overwhelming number of examples for both the validation and test data correspond 
to  DoS attacks: 79% for the validation data and 74% for the test data. There seems to be a 
bias on the part of both SVM-RBF and MHD to  learn the region of feature space populated 
by DoS attacks. Evidence for this claim is seen by looking at the distribution of normals 

7 



Table 6: Predicted class by known category for the validation and test sets, using the 
support vector machine supervised classifier. The %A column shows the percentage of attacks 
represented by each category. 

I I 

%A 
0.03 

98.70 
1.03 
0.23 
0.00 

100.00 

Normal 

Probe 

U2R 

test 
Normal Attack % Attack 

60272 321 0.53 
6961 222892 96.97 
1043 3123 74.96 

16143 46 0.28 
172 56 24.56 

84591 226438 

validation 

99.98 
98.62 
84.05 

0.00 
347972 

%A 
0.14 

98.43 
1.38 
0.02 
0.02 

100.00 

given the example is classified as an outlier. In the validation set, 68.4% of the outliers 
identified by RRF arc normals and for MHD nearly 60% of the outliers are normals. 

Tho SVM-RBF method is constructiiig the support in such a way that almost all of the 
probe, R2L, and U2R attacks are considered inliers. Together these three categories account 
for only 1.2% of the outliers. In contrast, nearly 19% of the outliers identified by MHD are 
probe, R21J, and U2R attacks. 

The outlier selection rate of SVM-R,BF on the test set is peculiar. Both SVM-RBF 
and MHD were trained so that approximately 2% of the observations would be beyond the 
support. In the test, set, SVM-R,BF identifies only 1.65% observations as outliers; MHD 
identifies 2.8% of the test data as outliers. Recall that  the test data was constructed in such 
a way that it was in fact nonstationary (while the validation set is randomly partitioned from 
the same superset as the training set). Not only was the distribution of attacks different 
from the training data, but the types of attacks were also different. 

Exarnining performance on the test set we find that for both SVM-RBF and MHD a 
lower percentage of the outliers are normals and and higher percentage are attacks. MHD 
is identifying a much higher percentage of probe, R2L, and U2R attacks as outliers than is 
SVM-RBF. In fact, these three categories is where the nonstationarity of the test data is 
concentrated. 

In table 6 for both the validation and test data we show for each attack type the number 
classified as normal; the number classified as attack; the percent of each attack type classified 
as an attack; and the distribution of attack type within the predicted attack class. The 
classifier here is the supervised SVM discriminator described in Section 3.2. 

In the validation set, nearly all the DoS attacks are being classified as attacks and within 
the observations classified as attack, DoS makes up nearly 99% data. As we move to the 
test data we see that while the distribution of attack types, within observations classified as 
attacks, is somewhat similar to the validation data, the percentage of each attack type being 
identified as an attack is quite different. For example, in the validation set, nearly 99% of the 
probe attacks are identified as attacks but in the test data only 75% are identified as attacks. 
Given an observation is classified as an attack, there is a 1.03% chance that observation is a 
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r-- 
__ 
Normal 
DoS 
Probe 
R2L 
U2R 

probe attack for the validation set and a 1.38% chance if we look at the test set. 

The results presented in table 7 contrast how the prediction method performs for data 
considered as inliers versus data identified as outliers. We compare performance on the 
validation and test set using both SVM-RBF and MHD to identify inliers and outliers. It 
is important to  keep in mind that the prediction method was trained on the entire training 
set and not, on just the observations that would be considered inliers. We have more to say 
about this later. 

First consider SVM-RBF on the validation set. This method is less likely to  call an 
example from normal, IloS, probe, and R.2L an attack if it is classified as an outlier than if 
it is classified as an inlier. 

SVM-RBF MHD 
validation validation test 

inlier outlier inlier ’ outlier inlier outlier inlier outlier 
1.55 0.08 0.77 0.21 9.11 

99.98 99.57 97.48 53.64 99.99 97.44 97.86 33.47 
98.74 911.94 82.69 22.18 98.59 98.70 95.63 47.42 
84.93 56.67 0.28 0.53 86.54 80.72 0.19 1.27 

0.00 0.00 31.64 0.00 0.00 0.00 40.86 13.33 

0.12 

For normal examples in the validation data, the prediction model is less likely to call an 
example identified as an outlier by SVM-RBF an attack than it is if SVM-RBF calls that 
example an inlier. In contrast, if MHD identifies the example as an outlier the prediction 
model is more likely to classify that example as an attack than if it is considered an inlier. 
On the test set, the prediction model is more likely to  call a normal example an attack if it 
is identified as a outlier than iS i t  is identified as an inlier for both SVM-RBF and MHD. A 
normal example in the test set that is called an outlier by MHD is much more likely to  be 
classified as an attack than a normal example called an outlier by SVM-RBF. 

For DoS attacks in the validation set, the prediction model works about the same on 
inliers and outliers for both SVM-RBF and MHD; slightly fewer DoS attacks identified as 
outliers by MHD are classified as attacks than are DoS attacks identified as inliers, (99.99% 
compared to  97.44%). On the test set there is a dramatic difference in performance between 
inliers and outliers. If SVM-R.BF or MHD call a DoS attack an inlier the the prediction model 
classifies nearly 98% of these as attacks. However, if SVM-RBF calls a DoS an outlier, only 
54% of these are classified as an attack; if MHD identifies the example as an outlier, only 
34% these are predicted to be attacks. 

Because SVM-RBF identifies so few probe, RZL, and U2R as outliers, as shown in Table 5 
we should be cautious about, any inferences we might want to make with respect to these 
attack types. 

For probe attacks from the validation set, the prediction model is classifying approxi- 
mately the same percent as attacks if MHD call the example an inlier or outlier; if SVM-RBF 
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Overall 
Inliers Only 
Outliers as Norma,ls 
Outliers as Attaclts 

det% fp% det% fp% 
90.3 0.5 90.3 0.5 
91.9 0.2 90.9 0.5 
89.5 0.2 89.7 0.5 
92.1 3.8 91.0 3.3 

calls the example a n  outlier then it is less likely to be classified as an attack than if called 
an inlier (92% compared to 99%). For probe attacks in the test set the prediction model is 
less likely to  call an outlier an attack than it is an inlier, for both SVM-RBF and MHD. If 
MHD calls the example an outlier the model is more likely to classify it as an attack than if 
SVM-RBF calls the example an outlier (47% compared to 22%). 

For R2L attacks in the validation set, approximately 85% of the examples called inliers 
by SVM-RBF are classified correctly and 86% of the examples called inliers by MHD are 
classified correctly. For examples identified as outliers by SVM-RBF, only 57% are classified 
correctly by the model. In contrast, of the outliers identified by MHD, the model correctly 
classifies about 81%. Recall that the SVM-RBF support estimation model only calls 30 
examples in the validation set “outliers”. The prediction model applied to  the test data 
works poorly with respect to R2L attacks, regardless of whether or not the example is called 
an inlier or an outlier. Out of 16,189 R2L attacks, the prediction model classifies only 
46 correctly. The MHD method identifies far more R2L attacks as outliers than does the 
SVM-RBF method (1422 cornpared to 189). 

In the validation set the prediction model incorrectly classifies all (50) of the U2R attacks 
as normal. In the tesl set, SVM-RBF identifies 51 out of 228 examples as outliers and MHD 
identifies 135. The prediction model correctly classifies 32% of the SVM-RBF identified 
inliers and none of the SVM-RBF identified outliers. For MHD inliers the model correctly 
classifies 41% of the inliers and 13% of the outliers. 

Table 8 summarizes the performance of the overall system including anomaly detection. 
In this evaluation, the simpler MHD method outperforms the SVM-RBF method. As ex- 
pected the inliers have better performance in both cases. In a real situation, the outliers 
must be accounted for, and the results show what happens if we label by default all of the 
outliers as either attacks or normals. Labeling them as normals lowers the detection rate 
from the baseline (overall), with some improvement to the false positive rate (even though 
this is not significant for the SVM-RBF). Labeling outliers as attacks raises the detection 
rate, but also raises the false-positive rate significantly. 

5 Discussion 

The practical import of this analysis is not in terms of a finished algorithm product, since 
this study was on static and historical data. The primary contribution is the significance 
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of considering network-based attack detection as distinct attack types, and the impact of 
anomaly detection on nonstalionarity. The information presented shows clearly that differ- 
ent types of attacks have both very different signatures, as well as very different types of 
change. Also, simply the dominance in numbers of some categories will have a large effect on 
automated learners, as they try to  minimizc a criterion related to  overall error minimization. 

If these ideas were to  be incorporated into a working system, the question of what to  
do with tlic outlier class arises. Choosing an arbitrary performance level on test set, the 
classifier along on all the data performance with a detection rate of 90.3% with a false- 
positive rate of 0.53%. On only the inliers the performance increases, but the outliers still 
need to  be accounted for. Table 8 summarized these results. Further exploration of a staged 
approach where inliers and outliers have different detection thresholds, or even different 
models altogether will be a solution to  improving overall performance. 

The anomaly detection segmentation increases the classification performance of inliers, 
as was expected. The details of the performance, as discussed in Section 4, are sometimes 
puzzling and counterintuitive. For example, the percentage of outliers decreases from the 
validation to  test sets for the SVM-RBF overall, and for some categories in the MHD, when 
natural expectation is that they would increase for a nonstationary dataset. Also, why the 
individual attack categories have their respective behavior with respect t o  nonstationarity 
in particular is not understood. 

These algorithms are suitable for inclusion on a high speed network analysis tool, such 
as the programmable FPGA based NIW Sensor developed at Los Alamos[9]. This hardware 
package is capable of analyzing network traffic a t  gigabit speeds, and is the flip-side of this 
project in algorithm development. 

Note that this analysis assumes packets are independent, when they are in reality not. In 
this dataset, we have no indicators of membership of a packet in a specific attack. However it 
is clear that  a denial of service attack will contain more than a few packets. Perhaps a more 
appropriate performance evaluation wouId consider attack groups as the unit of assessment, 
and flagging any packet in the group would be sufficient. It would be expected that in this 
mode of evaluation perceived performance would increase significantly. 

Finally, we will comment on our experience in using these methods. SVMs with nonlinear 
kernels are challenging to  use as a stand-alone tool for exploratory data analysis. Our 
experience is that  changes in parameters (e.g., kernel, regularization) can have significant 
changes in the performance of the algorithm, but yet these changes typically don’t have 
clear causes. In an data analysis situation, it often isn’t enough to  simply tune for the 
best performance. One also warits to  gain a better understanding of the data and problem. 
Kernel SVMs (and other nonlinear learners) are often deficient in this respect. 

However, as these rcsults show, in cornparison to  an intuitively understandable method 
such Mahalanobis distance, SVMs can be a valuable tool for gaining information regarding 
high-dimensional data, as well as good classification performance. If no comparative method 
is used, it would not be apparent whether the SVM is approximating Gaussian forms, or 
whether, as is the case here, the SVM is fitting a more wandering boundary. The analysis 
here clearly shows two things: the data is not approximately Gaussian (as is also suggested 



by the graphs), and the degree of flexibility in the model of the support has a significant 
effect on the results both overall and by category. 

We explored and used both the currently popular libSVM and SVMLight software for 
this work[7] [8]. Currently, neither tool yields continuous values for outlier status, which, 
although theoretically unsound, wouId be useful for exploration of performance around the 
margin, and would provide a rough method for rank-selecting outliers. 

6 Conclusion 

Computer network attack detection is potentially tractable using automated learners and 
classifiers. Challenges remain for this methodology. One challenge is to develop an under- 
standing of whether core attack types have a long-term signature; if not, tedious filtering 
data by hand to generate labeled datasets at intervals is required. Anomaly detection meth- 
ods have significant promise in this area, but they have not been demonstrated to  have a 
performance with significant enough probability of detection at acceptable false-alarm rates. 

Anomaly detection used a-s a method for filtering nonstationary example and ensure that 
classifiers operate in domains that were populated sufficiently in their training sets has been 
demonstrated to increase performance in this problem domain, as expected. The question 
remains of how to treat the outlier data robustly so that performance can be increased 
overall. One solution to  this would be to relax the degree of discrimination of inliers, so 
that the training set will yield enough outliers to train an outlier-specific model. Another 
method could employ pure anomaly detection methods for the outliers. These are interesting 
directions €or future work. 

In this case, the SVM method did not lead to the boost in performance of the Mahalanobis 
distance method. There are several possible reasons for this. One is that  there is perhaps 
not enough data to accurately assess the support of the distribution in all cases. The strong 
assumptions in the Mahalanobis distance measure, i.e. that  the data can be represented by 
estimated mean and covariance, may provide a degree of regularization not available in the 
SVM. On the other hand, it is true that the SVM can be tuned to  produce a more rigid 
classification surface, and can probably provide similar performance in this way. Another 
possible explanation is that  the margin attention of the SVM emphasized different classes 
naturally, and so simply provides a very different performance method. Although the SVM 
method would not be selected on the basis of this study, they have provided insight into the 
data characteris tics, and remain a tool for data exploration and classification. 

Additional areas for research suggest themselves. On-line adaptive anomaly detection is 
an intuitively interesting area, but whether an adaptive method can be biased with suffi- 
cient accuracy to distinguish attacks from non-attacks is an open question. Classification 
models of each category, with corresponding methods for distinguishing what is an inlier 
vs. outlier for each category seems like a compelling direction for improving performance. 
Studying how thest: rnachine learning methods complement rule-based systems is important 
to  assessing overall performance. This leads to the general topic of model ensembles: how 
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good performing families of models can be constructed for this application, and how much 
performance increase can be gained. 
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